Modified Look-Up Table for Enhancement of Torque Response in Direct Torque Controlled Induction Machine

نویسندگان

  • Goh Wee Yen
  • Nik Rumzi Nik Idris
  • Auzani Jidin
  • Tole Sutikno
چکیده

Received Mar 2, 2017 Revised May 2, 2017 Accepted May 15, 2017 Basically, the direct torque control (DTC) drive system is operated at light load. At light load, supplying the drive system with rated flux will decrease the efficiency of the system. To maximize the efficiency of drive system, an optimal flux has been applied during steady-state but when a torque is suddenly needed, for example during acceleration, the dynamic of the torque response would be degraded. Therefore, a modification to the voltage vector as well as look-up table has been proposed for the torque response improvement. The proposed voltage vector is generated by adding two adjacent conventional voltage vectors and implemented by using duty ratio. The duty ratio is used to estimate the activation time of each conventional voltage vector in order to produce the proposed voltage vector. Keyword:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Direct Torque Control for Induction Machine Drives Based on Fuzzy Sector Theory

Here, a new fuzzy direct torque control algorithm for induction motors is proposed. As in the classical direct torque control, the inverter gate control signals directly come from the optimum switching voltage vector look-up table, the best voltage space vector selection is a key factor to obtain minimum torque and flux ripples. In the proposed approach, the best voltage space vector is sel...

متن کامل

Tuning of fuzzy controller coefficients in direct torque control with space vector modulator for the three phase induction motors drive using Metaheuristic algorithms with considering electrical faults.

Among all the drive control methods of induction motors, the Direct Torque Control (DTC) method operates independently of the rotor parameters of the machine and, despite its simplicity, provides good torque control in both stable and transient modes. The use of residual comparators in these drives reduces the torque ripple and variable switching frequency. The most common solution is the use o...

متن کامل

Investigating Direct Torque Control of Six-Phase Induction Machines Under Open Phase Fault Conditions

This paper presents analysis and evaluation of classical direct torque control(DTC), for controlling a symmetrical six phase induction motor (SPIM) under open phasefault conditions. The machine has two three-phase windings spatially shifted by 60 electricaldegrees. The strategy of the proposed method consists of choosing the switching modesaccording to the configuration of living phases in such...

متن کامل

A Comparative Study on Predictive and ISVM Direct Torque Control Methods for a Doubly Fed Induction Machine Fed by an Indirect Matrix Converter

This paper presents a comparative study on the Predictive Direct Torque Control method and the Indirect Space Vector Modulation Direct Torque Control method for a Doubly-Fed Induction Machine (DFIM) which its rotor is fed by an Indirect Matrix Converter (IMC). In Conventional DTC technique, good transient and steady-state performances are achieved but it presents a non constant switching fr...

متن کامل

Reduction of Current , Flux and Torque Ripple Contents of Dtc for an Induction Motor Drive by Using Pi and Ann Controller

Three-level neutral-point-clamped (NPC) inverters are very appropriate for high-power adjustable-speed drive applications. Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to motor parameters variations. This paper presents a 3-level inverter-fed direct torque controlled (DTC) induction motor (IM) drive based on optimized switching ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017